4 research outputs found

    Localized Atomic Segregation in the Spalled Area of a Zr50Cu40Al10 BMG Induced by Laser-shock Experiment

    Get PDF
    Laser-shock experiments were performed on a ternary Zr50Cu40Al10bulk metallic glass. A spalling process was studied through post-mortem analyses conducted on a recovered sample and spall. Scanning electron microscopy magnification of fracture surfaces revealed the presence of a peculiar feature known as cup-cone. Cups are found on sample fracture surface while cones are observed on spall. Two distinct regions can be observed on cups and cones: a smooth viscous-like region in the center and a flat one with large vein-pattern in the periphery. Energy dispersive spectroscopy measurements conducted on these features emphasized atomic distribution discrepancies both on the sample and spall. We propose a mechanism for the initiation and the growth of these features but also a process for atomic segregation during spallation. Cup and cones would originate from cracks arising from shear bands formation (softened paths). These shear bands result from a quadrupolar-shaped atomic disorder engendered around an initiation site by shock wave propagation. This disorder turns into a shear band when tensile front reaches spallation plane. During the separation process, temperature gain induced by shock waves and shear bands generation decreases material viscosity leading to higher atomic mobility. Once in a liquid-like form, atomic clusters migrate and segregate due to inertial effects originating from particle velocity variation (interaction of release waves). As a result, a high rate of copper is found in sample cups and high zirconium concentration is found on spall cones

    Laser induced dynamic fracture of fused silica: Experiments and simulations

    Get PDF
    Fused silica samples were subjected to laser induced shock loading. Laser flux was varied in order to obtain different amounts and characteristics of damage in the samples. Three dimensional damage and fracture maps of two identical samples impacted by high and low laser flux values were obtained using both optical microscopy and X-ray computed micro-tomography. Three prevalent fracture and damage patterns were identified. Peridynamic approach was used to simulate the laser impact conditions on the samples in order to explain the causes of the observed fracture and damage morphologies. A proprietary shock physics code, ESTHER, was used to calculate the transient kinetic energy imparted to the samples based on the experimental laser flux values. The kinetic energy values were then integrated over time and provided target values to match for the peridynamic impact conditions. The main fracture patterns were captured by peridynamic simulations with reasonable quantitative accuracy. Explanations for initiation and propagation of each of the fracture patterns were presented based on the peridynamic dynamic fracture simulations. Limitations of the computational approach and recommendations for future work is provided
    corecore